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(2) The FF X-ray tubes are recommended for the 
diffractometers with moiaochromator geometry H/PA 
(or V/PE), as, in this case, the homogeneity of the 
monochromated beam is not influenced by the width 
of the X-ray tube focus. 

(3) All the graphite-monochromated X-ray beams, 
including the Cu Ka one, have a bell-shaped profile 

i along v± and a plateau along Vii. 
The quality of the primary beam should be taken 

into consideration when preparing a sample crystal 
for data collection (Tanaka, 1978). For Mo Ka FF 
tube and H/PE geometry the 90% region of the beam 
is less than 0.25 mm and drops steeply outside this 
range, which introduces the possibility of serious 
systematic errors. Large and irregular-shaped crystals 
are especially objectionable as the volume of such a 
crystal contained within the high-intensity region 
changes significantly when the crystal is reoriented 
for different diffractometer settings. Unfortunately, 
large platelets or needle-shaped samples, longer than 
0.5 or even 0.7mm, are occasionally used when 
Mo Ko~ FF X-ray tubes and H/PE monochromator 
geometry are applied. 

The intensity data measured for large irregular- 
shaped crystals are often corrected for absorption 

X-ray tube 

Sample 
Monochromator Collimator 

crystal I (v '  ) 

Fig. 7. A platelet sample crystal positioned for a ~ scan on a 
diffractometer with H/PE geometry. 

and often Furnas's method based on reflection 
intensity measurements at different ~ settings is 
applied (North, Phillips & Mathews, 1968). It can be 
seen from Fig. 7 that the rotation of the crystal about 
the ~ axis will cause systematic errors due to 
inhomogeneities of the beam (besides those of 
absorption) which, when this 'correction' is applied, 
will add new systematic errors to all the data already 
affected by the inhomogeneity effect during the data 
collection. It should be ensured that the sample crystal 
is small enough to avoid this kind of errors. There 
are no such errors in U-scanned reflection intensities 
for H/PA (or V/PE) geometry, as the beam is 
homogeneous along z for this geometry. 

We are grateful for the support of this work by a 
research grant from the Science and Engineering 
Research Council in the UK and by Project CPBP 
01.12 from the Polish Academy of Sciences. 
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Abstract  

In a recent paper [Weigel, Phan & Veysseyre (1987). 
Acta Cryst. A43, 294-304] the 'WPV' notation was 
proposed for the crystallographic point symmetry 
groups (PSGs) in four-dimensional space E4. The 

geometry of crystal families, systems and cells of H :4 
is illustrated with a few geometrical examples of 
crystallographic point symmetry operations (PSOs). 
The cells of the 33 crystal systems in ~4 are described 
and various polytopes are analysed. Some examples 
of geometry in higher dimensions are explained. 
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Table 1. Crystallographic types of  cells in ~2 

Crystal family Bravais type of  cells Holohedry 

Parallelogram Parallelogram p 2 
'Rectangle p 2 m m 

Rectangle ~.Rectangle c* 
Square Square p 4 m m 
Hexagon Hexagon p 6 rn m 
p: primitive; c: centred. 

* The primitive cell is a rhombus. 

Introduction 

Symmetry groups in higher dimensions may be used 
in the investigation of several domains of crystallogra- 
phy, such as incommensurate phase studies, quasi- 
crystals, etc. For example, it is always possible to 
associate an incommensurate phase with a periodic 
structure in a (3+d)-dimensional  superspace, the 
actual crystal solid being a three-dimensional section 
of this space. So a thorough introduction to the 
geometry of four or more dimensions is required. 

The purpose of this paper is the study of families, 
systems and cells of [[ 74 from a geometrical point of 
view and the retrieval of the cells of such families 
among polytopes of IF 4, be they regular or not. We 
shall also put emphasis on some families of IF 5 and E 6. 

Tables 1 and 2 briefly summarize the set of families, 
systems and Bravais types of cells in two- and three- 
dimensional spaces. We recall that there are six crystal 
families and seven crystal systems in three- 
dimensional space. 

Any cell is a parallelotope, i.e. a generalized 
parallelepiped. A parallelotope may be constructed 
by successive translations. Indeed, a point moving 
along a line traces out a segment. Then a segment 
translated in a direction different from its own line 
describes a parallelogram. The same process is easily 
generalized. An n-dimensional parallelotope is 

C 

Table 2. Crystallographic types of  cells in [E 3 

Crystal family Bravais type of  cells Holohedry 

Triclinic Triclinic P 1 
Monoclinic Monoclinic P or A 2/rn 
Orthorhombic Orthorhombic P, C, I or F 2/m 2/m 2/m 
Tetragonal Tetragonal P or I 4/m 2/m 2/m 

~Hexagonal P 6 /m 2 /m 2 /m  
Hexagonal [Hexagonal description of R 32/m 
Cubic Cubic P, I or F 4/m 3 2/rn 

P: primitive; A, B or C: one-centred face; 1: body-centred; F: all the 
faces centred; R: rhombohedron. 

generated by translating an (n-1)-dimensional  
parallelotope in a direction which does not belong 
to the superspace ~:"-~. Bravais types of cells have 
the maximum number of possible right angles com- 
patible with the geometric supports of the point sym- 
metry operations (PSO for short) of the holohedry 
(orientation symmetry of the lattice). However, these 
cells are not always of primitive nature. Other primi- 
tive cells can describe the same lattice but they do 
not have the maximum number of possible right 
angles. We recall two well known examples: (1) the 
centred rectangular cell and primitive rhombic cell 
of II :2 (Fig. 1), where (x, y) is the conventional non- 
primitive basis, (x', y') is the primitive basis of the 
rhombic lattice; and (2) hexagonal R and rhombo- 
hedral P lattices of IF 3 (Fig. 2), where (x, y, z) is the 
basis of the hexagonal R lattice, and (x', y', z') is the 
primitive basis of the rhombohedral lattice, i.e. a 
parallelepiped of which all the faces are equal 
rhombs. 

The crystal systems are characterized by the point 
symmetry group or PSG of the lattice (holohedry). 
Let us consider a geometrical representation of PSOs 
with respect to an orthonormal basis (x, y, z, t) of the 
vector space E 4 and the matrices associated with these 
PSOs. (1) Homothetie around the point O: i 4 (Fig. 
3). Its matrix is the matrix number 1. (2) Inversion 
around the axis x'x: lyz, (Fig. 4). Its matrix is number 
2. (3) Rotation in the plane xy around the plane zt :  

3~y (Fig. 5). Its matrix is number 3. (4) Reflection on 
the hyperplane yzt: m, (Fig. 6), with matrix number 
4. (5) Double rotation 5~. 52., (Fig. 7), with matrix 

Fig. 1. The centred rectangular cell and primitive rhombic cell 
of E 2. 

Fig. 2. Hexagonal  R and rhombohedral  P lattices of  E 3. 

j 
p, 

p J  

Fig. 3. Homothetie around the point O: 14. 

Fig. 4. Inversion around the axis x'x: ]yzt" 
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0 0 0 010° 1 
Matrix number 1. Homothetie 14. 

(1 ooi)_ 0 1 0 
- -  

0 0 1 
o 0 0 

Matrix number 2. Inversion ly=t. 

,/-1/2 -x/3/2 0 ~) 
!2  -1/2 0 

0 1 
0 0 

Matrix number 3. Rotation 31y. 

1 o 
o 1 
0 o 

Matrix number 4. Reflection rex. 

cos 2~r/5 -sin 27r/5 0 00 ) 
sin 27r/5 cos 2~'/5 0 

0 0 cos4~r/5 -sin4-rr/5 
0 0 sin 4~'/5 cos 4~'/5/ 

Matrix number 5. Double rotation 5,,y5zt.l 2 

/~~ ° 0 ~~)001001 

Matrix number 6. Rotation reflection mx4~zt. 

that some simple examples of cells and polytopes are 
described (§ I) and a general formula which gives the 
order of the PSG of a polytope is proved (§ II). 
Finally, right hyperprisms and hyperpyramids in []74 
are described in § V. 

I. Some examples of crystal cells and polytopes or 
molecules in 1:4 

1. Crystal cells 

(a) Right  hyperprism based on parallelepiped: 
family II (Fig. 9). The notation of its holohedry is 
1.1_ m (Weigel, Phan & Veysseyre, 1987) and the order 
of this PSG is 4. This order can be immediately 
calculated by computing the product 2 x 2 where the 
first term represents the order of the PSG of the 
parallelepiped in IE 3 and the second one corresponds 
to the right hyperprism (see § II). 

Fig. 7. Double rotation: 5xy5z,.1 2 

number 5. (6) Rotation reflection or rotation inver- 
sion: mx 41z~ (Fig. 8), with matrix number 6. 

In §§ III and IV, we shall study the geometry of 
the cells of all the crystal systems of ~4, but before 

Fig. 5. Rotation in the plane xy around the plane zr 3~xy. Fig. 8. Rotation reflection: m,,4~,. 

Fig. 6. Reflection on the hyperplane yzt: m:,. Fig. 9. Right hyperprism based on parallelepiped. 
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(b) Orthogonal square hexagon: family XV (Fig. 
10). Let (x, y, z, t) be four vectors of [E 4 such that x 
and y are perpendicular and of equal length a; z and 
t are of equal length b; the angle is 2rr/3 and the 
plane xy is orthogonal to the plane zt. The whole 
polytope is generated by translating the regular 
hexagon (zt) along the two sides and one diagonal 
of the square (xy). We count 24 vertices. The notation 
of the holohedry of this family is m, m, 4 _L 6, m, m 
(Weigel et al., 1987). The order of the PSG of this 
polytope is equal to 96, i.e. 8 × 12 where 8 is the order 
of the PSG of the square and 12 that of the hexagon 
in IF 2 (see § II), yet the cell or parallelotope built on 
(x, y, z, t) is three times smaller. The cell is drawn 
with dotted lines in Fig. 10. 

2. Polytopes or molecules 

(a) Simplex: regular pentatope or molecule, 0115 
(Fig. 11). A simplex is the generalization of a triangle. 
Any ( n + l )  points which do not lie in an ( n - 1 ) -  
dimensional space are the vertices of an n- 
dimensional simplex (Coxeter, 1973). A pentatope is 
the four-dimensional simplex and a regular pentatope 
has all edges equal, all faces equal and so on. The 
notation of the PSG of the regular pentatope is 
(2,, 3, m)55. Its order is 120= 5! (Weigel, Veysseyre 
& Charon, 1980). 

(b) Right hyperpyramid based on cube, 0II8 (Fig. 
12). Let O be the vertex of the right hyperpyramid 
and O the centre of the cube; the vector OIJ is 
orthogonal to the space IF 3 containing the cube. The 
notation of the PSG is 4/m, 3, 2/m, and its order is 
48, the same as the order of the PSG of the cube in E 3. 

II. Order of  the point symmetry group of  a convex 
polytope 

The group of all the isometries of a polytope leaves 
at least one point invariant - the isobarycentre (centre 

~ F " - . ~ " ~  "~ ~ ~'- ~ z 

Fig. 10. Orthogonal square hexagon. 

' (  /15 

I1,,~ 
I ~ . . - e  

of gravity) of the vertices of the polytope. Other points 
may also be left invariant, as the axis of a right 
hyperprism, for instance. We recall that an isometry 
is a one-to-one mapping which preserves lengths or 
distances. The isobarycentre O and n vertices 
a ~ , . . . , a ,  define the polytope perfectly if (O 
a~, . . ,  a,) is a basis R of IF". We show the following 
result: The order of the PSG of a polytope is equal to 
the number of distinct transforms of the basis R by all 
the isometries of  this PSG and this number does not 
depend on the choice of  the basis. 

Two transforms of a basis are said to be distinct 
or different if they differ by one point at least. 

Proof. It is easy to show that: the transform of a 
basis is a basis (indeed, because an isometry is 
a one-to-one mapping, the image of IF ~ cannot be a 
space of dimension p < n); the transform of a basis 
R by every isometry except the identity is a basis 
distinct from R because an isometry of IF ~ cannot 
have (n + 1) invariant points if it is not the identity; 
and two different isometries do not give the same 
image of R. 

We shall explain how to count these images; but 
first we give some definitions. 

Two vertices a'~ and a~' of the polytope are said to 
be 'equivalent' if an isometry leaving the polytope 
invariant is such that the transform of a'~ is a ( ;  
therefore these points are equidistant from .(2. This 
relation is a relation of equivalence among the ver- 
tices, the equivalence classes being the different 
orbits. Let Na~ be the number of vertices equivalent 
to a~, i.e. the number of points located at the same 
distance from O as a~. 

t tt In the same way, two vertices a2 and a2 are 
equivalent when the vertex a~ is fixed, if there exists 
an isometry leaving the polytope and the point a~ 
invariant and permuting a~ and a~. We denote by 
Na2 (a~) the number of vertices equivalent to a2 when 
a~ is fixed, i.e. the number of vertices equivalent to 
a2 located at the same distance from a~ as a2; they 
satisfy the relations (where d means 'distance') 

d ( n a 2 )  = d ( n a ' ~ )  = d ( n a ~ )  = . . .  

d( ala2) = d( a,a'2) = d( a,a~) = . . . .  

The number Na2(a~) does not depend on the choice 
of a~ among the points equivalent to al. 

Then we define Na3(ala2), Na4(ala2a3) and so on. 
The number of transforms of the basis R and con- 
sequently the order of the PSG of the polytope is 

: 0 . - ~ - ~ ,  .4".' . - ' /  
i /  / i  i ~ , /  
2. : ' 1  "7 

Fig. 11. Molecule 12//5. Fig. 12. Right hyperpyramid based on a cube. 
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given by the formula 

N = Nal  x Na2(al) x Na3(ala2) x . . .  

x N a , , ( a l . . .  a,,-l). 

Indeed, there are Na~ choices for the first vertex 
a~, then Na2(al) choices for a2 when al is chosen, 
then Na3(ala2) choices for a3 when a~, a2 are chosen. 

In order to illustrate this method, we now give some 
examples. 

First, we choose a simple example of a polygon: 
the square (Fig. 13). The centre O is an invariant 
point. A possible basis tied to the square is (Oa~a2). 

Na~ = 4: all the vertices are equivalent. 
Na2(al) =2: when a~ is chosen, the vertices a2 and 

a 4 are equivalent. 

Hence N = 4 x 2 = 8. 
Secondly we choose as an example of a polyhedron 

of n :3 the regular tetrahedron (Fig. 14). Only the centre 
.(2 is an invariant point and all the four vertices are 
equivalent. A possible basis tied to this polyhedron 
is (Oala2a3). 

Na~ = 4: we have already shown that all the 
vertices are equivalent. 

NaE(al) = 3: the vertices a2, a3, a4 are equidistant 
from a~. 

Na3( ala2) = 2: a3a2a 4 are equidistant from al , a3ala 4 
are equidistant from a2; 

therefore a 3 and a4 are equidistant from a~ on the 
one hand and from a2 on the other hand. 

So N = 4 x 3 x 2 = 2 4 = 4 !  
This result is general. The order of the PSG of the 

regular simplex of the n-dimensional space is equal 
to ( n + l ) !  (Weigel et al., 1980.) 

The previous formula can be simplified when the 
polytope is an orthogonal product of two polytopes, 
as, for instance, the hypercube of E 4 is the orthogonal 
product of two equal squares. More generally, let it 
be supposed that a polytope P,, is the orthogonal 
product of the polytopes Pi, Pj, the order of the PSG 
of Pn being g,, that of Pi being gi and that of Pj being 
gj. 

Then 

g,, = gi X gj 

if the decomposition is unique, and 

Fig. 13. Square. 

where ( 7 ) i s  the number of ways to realize the 

decomposition. 
Let us take the example of the hypercube of IF a. It 

may be considered as: (a) the orthogonal product of 
four equal segments, therefore g, = 2 x 2 x 2 x 2 x 4! = 
384, where 2 is the order of the PSG of a segment 
and 4t the number of ways to consider this decomposi- 
tion; or (b) the orthogonal product of two equal 
squares, therefore gn = 8 x 8 x 6, where 8 is the order 
of the PSG of the square and 

is the number of ways to realize this decomposition; 
or (c) the orthogonal product of a cube and of a 
segment equal to the side of the cube, therefore g,, = 
48 x 2 x 4 where 48 is the order of the PSG of the 
cube, 2 that of the segment and 

(~ )  = ( ~ ) = 4  

is the number of ways to realize this decomposition. 
This formula also gives the order of the PSG of a 

molecule, or rather of the polytope defined by the 
nuclei in their equilibrium positions, provided that 
we specify the notion of equivalent points: two points 
are said to be equivalent if they belong to the same 
chemical species, the following being unchanged. 

As an example, we can consider the molecule SF6 
(Fig. 15). The invariant point is S, the centre of the 
octahedron. A possible basis is (S, FIF2F3). 

NF~ = 6: the six nuclei are equivalent. 
NF2(F~) =4: the nuclei FEFaF4F5 are equidistant 

from F1; 
the nuclei F3FsFIF6 are equidistant 
from F2. 
So F3 and F5 are equidistant from F~ 
and F2. 

So N = 6 x 4 x 2 = 4 8 .  

81 

82 @84 
Fig. 14. Regular tetrahedron. 

Fig. 15. Molecule SF 6. 
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III. Crystal families of ~4, their cell types and their 
holohedries 

With the aim of giving a geometrical name to each 
primitive system of the 23 crystal families of [E 4 w e  

have studied the quadratic form associated with the 
corresponding lattice. Each crystal lattice is described 
by four vectors (x, y, z, t) which define a lattice basis. 
The matrix of the quadratic form associated with 
these vectors is matrix number 7. This symmetric ( yz / 

x.y Ilyll z y. z y .  t 

x . z  y . z  Ilzll 2 z . t  
x . t  y . t  z . t  I[/11 z 

Matrix number 7. A general quadratic form. x. y denotes the scalar 
product of the two vectors x and y; Ilxl12= x. x and Ilxll is the 

norm of the vector x. 

matrix is determined by four parameters of length 
and six parameters of angle; Brown, Billow, 
Neubilser, Wondratschek & Zassenhaus (1978) list it 
for each lattice. 

From this quadratic form we have looked for a 
polytope describing the associated lattice and we have 
tried to respect conventional crystallographic axes. 
For instance, the matrix of the quadratic form of the 
system 13 is matrix number 8. We can easily see that (ao 

0 b 0 
0 0 c 

0 0 0 
Matrix number 8. Associated with system 13. Ilxll 2= a, [lyll 2= b, 

Ilzll2= Iltl12= ¢. 

the planes xy  and zt are orthogonal and [Iz[[ = I[tH, 
z. t =0,  x . y  =0.  So we denote it by 

orthogonal rectangle ( x y )  square (z t ) .  

Frequently the form of the matrix suggests the 
possibility of choosing two polygons in the two planes 
xy  and zt or xz  and y r  The two planes xy  and zt are 
orthogonal or monoclinic or diclinic. The angles 
between these two planes depend on four parameters, 
the scalar products x. z, x. t, y .  z and y.  r If these 
angles depend only on two parameters (one param- 
eter) we say that the two planes, and furthermore 
the polygons located at these planes, are diclinic 
(monoclinic). For example, the matrix of the quad- 
ratic form of system 11 is matrix number 9. In each 
plane xy  and zt we recognize a rhombus and the 
four angles between these two planes depend on two 

(!2 a a tl t~ 

n c C/c2 } 
\ m - n  rn c/2 

Matrix number 9. Associated with system 11. x. z = y .  t= m; 
y . z = n ;  x . t = m - n .  

parameters, m and n. We call this family 

di diclinic hexagons (xy), (z t ) .  

In two cases the cell is described by a hyperprism. 
We return to these in § V. 

Three systems are of particular interest: system 32 
has been desc r ibed  in an earlier publication 
(Veysseyre, Weigel, Phan & Effantin, 1984). It is the 
hypercubic system. Systems 27 and 31 are the only 
ones in which rotations 55 and 1010 appear. System 
31 is a particular case of the system 27; we study it 
here. The matrix of the quadratic form of system 31 
is number 10. The four vectors of the lattice basis 

a - a / 4  - a / 4  - a / 4 ~  

- a / 4  a - a / 4  - a / 4  I 
o,4 o o,4 I 

\ - a / 4  - a / 4  - a / 4  a /  
Matrix number 10. Associated with system 31. [IxH 2= Ib'[] 2= 

IlzllZ = Iltl12 = a" cos (x, y ) =  cos (x, z )=  . . .  =cos  (z, t )=  -~. 

have the same norm a and the angle between any 
two vectors has a cosine equal to -¼. With this quad- 
ratic form we can associate a regular simplex of ~4 
or a regular pentatope, which is not a crystal cell. 

Let us recall briefly some geometrical properties of 
regular simplexes of IF 2, [E 3 and IF 4. In 11:2 the regular 
simplex is the equilateral triangle (Fig. 16). If A~, 
A2,  A3 are the vertices and 02 the barycentre, then 

O2AI + O2A2+ O2A3 = 0. 

Therefore 

c o s ( 0 2 A i , O 2 A j ) = - ½  V ( i , j )  i # j .  

In IF 3 the regular simplex is the regular tetrahedron 
(Fig. 17). If A ~ , . . . ,  A 4 a r e  the vertices and .(-23 the 
barycentre, then 

O 3 A  ~ -t- O 3 A 2 +  O 3 A 3 +  O 3 A  4 = 0, 

cos (O3-,4-~i, O---~j) = -~ V(i, j)  i # j. 

In E 4 the regular simplex is the regular pentatope 
(Fig. 18). If A ~ , . . . ,  A5 are the vertices and .(-24 the 

Fig. 16. Equilateral triangle. 

Fig. 17. Regular tetrahedron. 
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barycentre,  then 

a n A  i + . . .  "k- O4A ~ = 0 

c o s ( O 4 A i , O 4 A j ) = - ¼  V(i , j )  i # j  as stated above. 

Let us explain how a regular simplex can be 
inscribed in a part icular  parallelotope which defines 
a crystal system. 

61:2: Construction o f  an equilateral triangle in a rhom- 
bus. Let (x, y)  be a lattice basis of  the rhombus  (Fig. 
19): 

Ilxll = Ilyll and cos ( x , y ) = - ½ .  

We denote by So the origin of the cell and by A~, 
A 2 and A 3 the other vertices: 

S o A  1 = x, S o A 2  = y, S o A  3 = x + y. 

If O~ and 02  are the mid-points  of SoAI  and S o A 2 ,  

then O1, 02 and A 3 are the vertices of an equilateral 
triangle. 

6t:3: Construction o f  a regular tetrahedron in a par- 
ticular rhombohedron. Let (x, y, z) be a lattice basis 
of the part icular  rhombohedron  (cos o~ = - ½ )  (Fig. 
20) .  

and 

Ilxll = Ilyll = Ilzll 

cos (x, y) = cos (x, z) = cos (y, z) = _ !  3" 

We denote by So the origin of  the cell and by A~, 
A 2 , . . . ,  A7 the other vertices: 

SoA1 = x SoA2 = y S o A 3  = Z 

S o A a =  x + y S o A s =  x + 2 S o A 6 =  y + z 

S o A  7 = x + y + z. 

All the faces of  this paral lelotope are equal rhombs,  
so it is a rhombotope .  

S o A 7  is the diagonal  of  smallest length: 

IlSoATII = =  Ilxll z 

IIa,a61l z-- IlazasII z-- IJa3aalJ 2= (11/3)llxll 2. 

AI A 2 

ASIA3 4 
Fig. 18. Regular pentatope. 

a ~  . I \  

Fig. 19. Equilateral triangle inscribed in a rhombus. 

Three faces have a common vertex in So.  If  11,/2 
and /3 are the centres of  these faces and O the 
barycentre  of  the paral lelotope we can easily show 
the relations 

O I 3 = - ½ z  0 1 2 = - ½ y  O I ~ = - ½ x .  

So 

I I m ,  II = IIm=ll  = lira311 

and the angles between any two vectors have a cosine 
equal to -½. I1,12 and 13 are three vertices of  a regular 
te t rahedron,  the fourth being A7, and 

O A 7 = ½ ( x +  y + z ) .  

64: Construction o f  a regular pentatope in a par- 
ticular rhombotope such that cos ce = -¼. Let (x, y, z, t) 
be a lattice basis of  the rhombotope  (Fig. 21). 

Ilxll = Ilyll = Ilzll = Iltll 

cos (x, y) = cos (x, z) = cos (x, t) = cos (y, z) 

= c o s  (y, t ) = c o s  (z, t ) = - ¼ .  

As previously we denote by So the origin of  the 
cell and by A~, A 2 , . . . ,  A~5 the vertices: 

SoAa = x S o A  2 = y . . .  S o A 6  = x q- 7. . . .  

SoA15 = x + y + z + t. 

/ I \ 

~ "-\" ~ A 4 @ 
A2 "" :'~/~ x,,~A, Y z 

Fig. 20. Regular tetrahedron in a particular rhombohedron: 
COS O~ = 1 .  

i 
x 

Fig. 21. Regular pentatope in a particular rhombotope: cos a = -¼. 
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Table 3. Geometric names and WPV notation for primitive Bravais cells of  E 4 

This list o f  pr imit ive systems of  E 4 includes: in the first co lumn the family,  indicated by a roman  numera l ,  and  the system, indicated 
by an arabic  numera l ;  in the second column,  the geometr ic  name  of  each system; in the third column,  the pa ramete r s  required for  the 
quadra t ic  fo rm associa ted  with the lattice. 

I f  (x, y, z, t) denotes  the lattice basis,  the fol lowing nota t ion  is used: 

a:llxll 2 b:llyll 2 c:llzll 2 d=llt}l 2 

ct: the angle be tween  y and  z t~: the angle be tween  x and t 
/3: the angle be tween  x and  z e: the angle be tween  y and t 
y: the angle be tween x and y rl: the angle be tween z and t; 

the angles are chosen be tween 0 and  7r. 
The four th  co lumn gives the relat ions between pa ramete r s  when they are required for  the comple te  definit ion of  the cell; the fifth 

co lumn gives the order  of  the PSG of  the ho lohedry  of  the system; the sixth co lumn gives the holohedr ies  in WPV nota t ion (Weigel 
et al., 1987); and  the seventh co lumn gives the PSG ÷ in the same notat ion.  

Addi t ional  P S G  of  the Rota t ion  g roup  
Bravais type of  cells (primitive) Parameters  relat ions Order  ho lohedry  of  the ho lohedry  

Hexaclinic a, b, c, d 2 ]4 
a,[3, y, 8, e ,~  

Right hyperprism based on a, b, c, d 4 ]3-m ]4 
parallelepiped (xyz) a, [3, y 

Di orthogonal parallelograms (xy),  (zt) a, b, c, d 4 23_2 
y,r/ 

Orthogonal parallelogram (xy) a, b, c, d 8 23_2, m, m 23_2 
rectangle ( zt ) y 

Di orthogonal rectangles (xy),  (zt) "a, b, c, d 16 m, m, 2.1_2, m, m (2, 2, 2)®]4 
Orthogonal parallelogram (xy) a, b, c 16 2_1.4, m, m 23-4 

square (zt) y 
Orthogonal parallelogram (xy) a, b, c 24 23-6, m, m 2_1_6 

hexagon (zt) y 
Di diclinic squares (xy),  (zt) a, c e = [3 4 44* 

[3,8 a = I r - 8  
Di diclinic hexagons (xy),  (zt) a, c e =/3 6 66* 

[3, 8 cos a = cos/3 - cos 
Orthogonal rectangle (xy) square (zt) a, b, c 32 m, m, 2_1_4, m, m 23-4, 2, 2 
Orthogonal rectangle (xy) hexagon (zt) a, b, c 48 m, m, 23-6, m, m 23-6, 2, 2 
Di monoclinic squares (xy), (zt) a, c a = 8 = w/2 8 44*, 2 

[3 ~=[3 
Di monoclinic hexagons (xy),  (zt) a, c e = [3 12 2, 66*, 2 

/~ c o s  ~ = cos 8 = ½cos [3 
Di orthogonal squares (xy),  (zt) a, c 64 m, m, 4_1_4, m, m (43_4) ̂  2 
Orthogonal square (xy)  hexagon (zt) a, c 96 m, m, 4.1_6, m, m 2, 2, 43_6 
Di orthogonal hexagons (xy),  (zt) a, c 144 m, m, 63_6, m, m (63_6) ̂  2 
Right hyperprism based on cube (xyz) a, d 96 (4/m,  3, 2 / m ) ± m  (4, 3, 2)(~)'14 
Di monoclinic isosquares (xz),  (yt) a a = -q = y 16 88 ^ 2 

y 8 = z r - y  
Di particular monoclinic a a = r/= y 20 1010 ^ 2 

isorhombs ( xy ), ( zt ) y [3 = 8 = e 
c o s  [3 + cos y = - 

XX 28 Di monoclinic isohexagons (xz) ,  (yt) a Y = "0 = ~r/2 24 1212 ^ 2 
8 a = T r - 8  

Di orthogonal isohexagons (xy),  (zt) a 
Particular rhombotope cos a = -~ a 
Hypercubic a 

Family;  
system 

I 01 

II 02 

III 03 

IV 04 

v 06 
Vl 07 

v i i  09 

Vlll 10 

IX 11 

x 13 
x I  15 

XIl 16 

XIII 17 

XIV 19 
x v  20 

x v I  23 
xvI1  25 

x v I I l  26 

x I x  27 

XXI 30 
XXII 31 

XXIII 32 
a - - - B = y = 8 = e = n  

288 (m, m, 6_1_6, m, m) 1212 1212, 6_1_6, 1212 
240 (4, 3, m) 1010 (2, 3) 1010 
384 (4 /m,  3 , 2 / m ) 8 8  (4,3,2) 88 

This parallelotope contains eight parallelepipeds 
and four of  them have a vertex in So. The centres I!, 
/2, 13 a n d / 4  of  these parallelepipeds are four vertices 
of  a regular pentatope,  the centre of  which is O, the 
fifth vertex being A15, and 

OAls = l (x  + y + z +  t). 

We can now summarize the construction of  the 
pentatope: the five vertices of  the regular pentatope 
inscribed in a particular rhombotope of  I1:4 (cos a = 
--~) are the centres of  the four parallelepipeds having 
a vertex in So (the origin of  the cell) and the point 
S opposite  to So. 

Table 3 lists the geometric names and the WPV 
notations (Weigel  et al., 1987) for primitive Bravais 
cells of  IF 4. 

IV. Non-primitive crystal systems of E 4, their cell types 
and holohedries 

Ten systems are not primitive. For each non-primitive 
system, the matrix of  the quadratic form is given by 
Brown et al. (1978). With respect to a well chosen 
basis this matrix is identical to the matrix of  the 
primitive system of  the same family. 
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Table  4. Geometric names and W P V  notation for non-primitive Bravais cells o f  E 4 

This table  is s imi lar  to Tab le  3 excep t  on  three  points .  The  s e c o n d  c o l u m n  ind ica tes  the  pr imi t ive  t ype  o f  cells. T h e  fifth c o l u m n  ind ica tes  
the Bravais  t ype  o f  cells wh ich  are  cent red .  The  sixth c o l u m n  gives the  mul t ip l ic i ty  o r d e r  o f  the  cell ( n u m b e r  o f  cen t r ing  poin ts ) .  

Fami ly ;  Primit ive cell A d d i t i o n a l  Bravais  t ype  o f  cells PSG o f  the  R o t a t i o n  g r o u p  
sys tem (non -Brava i s  cell) Pa ramete r s  re la t ions  (non-p r imi t ive )  N O r d e r  h o l o h e d r y  o f  the h o l o h e d r y  

V 05 Di diclinic a a = ~5 Di orthogonal 
isorhombs (xy), (zt) y,/3, t$ e =/3 rectangles (xy), (zt) 16 8 (2, 2, 2)®74 

KU centred 
VII 08 Oblique hyperprism a, b e = fl Orthogonal 

based on y, a a = 8 = y parallelogram (xy) 3 12 26, m, T 26 
rhombohedron (yzt) hexagon (zt) 

R(2, 3, 4) centred 
X 12 Di monoclinic a e =/3 Orthogonal 

isorhombs (xy), (zt) y,/3 a = 8 = y rectangle (xy) 8 16 2.1.4, 2, m (2, 2, 2)®74 
square (zt) 
KG centred 

XI 14 Right hyperprism a, b Orthogonal 
based on a rectangle (xy) 3 24 26/m, 2, 2 26, 2, 2 
rhombohedron (yzt) hexagon (zt) 

R(2, 3, 4) centred 
XIV 18 Di orthogonal a Di orthogonal 

isorhombs (xt), (yz) 8 squares (xy), (zt) 4 32 m, 44, m 2, 44, 2 
D(1,4)(2, 3) centred 

XVI 21 Rectangle (xt) a, d Di orthogonal 
hexagon (yz) * hexagons (xy), (zt) 4 24 (36, 2, 2)®14 
very particular G(2, 3) centred 

XVI 22 Di monoclinic a B = a =/3 = e = .Di orthogonal 
isohexagons (xz), (yt) y 27r/3 hexagons (xy), (zt) 3 72 (m, 313, m)®i4 [(313) ^2]®14 

cos 77 + cos y = ½ RR2 centred 
Di isorhombs (xy) a /3 = 8 = a = e Right hyperprism 

XVI 24 (zt) particular a, = 77 = y based on cube (yzt) 16 48 (4, 3, m ) ® i 4  (2, 3 )®i4  
KU centred 

Di isohexagons (xz) a cos y = cos *1 = ~ Di ~so- 
XXI 29 (yt) particular a = ~ 5 = 2 ~ ' / 3  hexagons (xy), (zt) 3 144 [4(m, 3 /3 ,  m)4]®14 [(36, 3.1_3) A2]®14 

orthogonal 
RRz centred 

Di isosquares (xz) a y = 8 = a = 7r/3 Hypercubic 
XXIII  33 (yt) particular r /=2~r/3 Z centred 2 1152 (4/m, 3,2/m)1212 (4,3,2)1212 

• b = c = ~(a + d); cos/3 = 2 cos y = x/a/(x/a + b); cos e = 2 cos t /=  x/b/(x/a + b); because cos a = ½, 8 = zr/2. 

For example, the matrix of  the quadratic form of  
system 18 in the basis (x, y, z, t) is matrix number 11. 
This primitive type of cell is called 

di orthogonal isorhombs (xt), (yz).  

( ! 0 0  m 0 m 0a m 

Matr ix  n u m b e r  11. Assoc i a t ed  with sys tem 18. [Ixll2=llyll 2= 
Ilzll~ = Iltl12 = a ;  x .  t =  y .  z = m.  

In a new basis (x', y', z', t') defined by 

x ' =  x + t z '= - y +  z 

y ' =  y +  z t ' = - x  + t 

the matrix of  the quadratic form is matrix number 12. 
We recognize two orthogonal squares. So we denote 

it 

di orthogonal squares (xy), (zt) 

D(1, 4)(2, 3)-centred. 

a '  0 

0 c' 

o o 
Matr ix  n u m b e r  12. Assoc i a t ed  with sys tem 18. Basis (x', y', z', t'); 
x ' = x + t ;  y ' = y + z ;  z ' = - y + z ;  t ' = - x + t .  IIx'll:=lly'll2=a'; 

Hz'll2= Ilrl[2= c'; a ' = 2 ( a + m )  and  c ' = 2 ( a - m ) .  

The four  nodes  o f  the cell are def ined  by 

(0,0,o,o) 

In Table  4 we give the geomet ry  o f  the cells re la ted  
to non-primitive systems. This table differs from Table 
3 by three items: in column 2 we have indicated the 
primitive type of cells; in column 5 we have given 
the Bravais type of cells which are centred; and we 
have added a column'6, headed N, for the multiplicity 
order of  the cell (number of  centring points). 

V. Right hyperprisms and hyperpyramids in E 4 

The right hyperprism generalizes the right prism of  
E 3. It is generated by a line passing through a polytope 
of IF "-1, which is called the basis, the line being 
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Table 5. Right hyperpyramids and hyperprisms in ~_4 

In this table we have listed right hyperprisms and hyperpyramids  based on solids o f  E 3. These solids are given in the first column. We 
recall that tetragonal:  hexagonal ,  pentagonal ,  octagonal  mean right prisms of  IF 3 based on square, regular hexagon,  regular pentagon 
and regular octagon,  For  each hyperpyramid  or each hyperpr ism we have given its PSG and its PSG ÷ when the PSG is a P S G -  (Weigel, 
Veysseyre, Phan, Effantin & Billiet, 1984). The first part o f  the table concerns the types o f  cells which are crystal lographic in 
three-dimensional  space; we give the order  of  each PSG (column 3 and column 6) and we indicate in columns 7 and 9 by an h if the 
PSG or PSG ÷ is a holohedry.  In the second part of  the table examples of  point  symmetry  groups which are not crystal lographic in 
three-dimensional  space are given. 

Right hyperpyramids  Right hyperpr isms 

Basis in ~:3 PSG 0 PSG ÷ PSG 0 

Triclinic cell 1 2 1 lZm 4 
Monoclinic cell 2/m 4 2 222, m, m 8 
Orthorhombic cell 2/m, 2/m, 2/m 8 2, 2, 2 m, m, 222, m, m 16 
Tetragonal 4/m, 2/m, 2/m 16 4,2,2 m,m, 2i4, m,m 32 
Rhombohedral cell 3, 2/m 12 3, 2 26/m, 2, 2 24 
Hexagonal 6/ m, 2/ m, 2/ m 24 6,2,2 m, m, 2&6, m, m 48 
Cube 4/m, 3,2/m 48 4,3,2 (4/m, 3,2/m)±m 96 
Tetrahedron 4, 3, m 24 2, 3 (~,, 3, m)±m 48 
Pyramid based on square 4, m, m 8 4 
Pyramid based on equilateral triangle 3, m 6 3 
Pyramid based on regular hexagon 6, m, m 12 6 
Right prism based on equilateral triangle 6, m, 2 12 3, 2 m, m, 2±3, m 24 
Molecule of allene* ~,, 2, m 8 2, 2, 2 

Pentagonal 1--0, m, 2 20 5, 2 m, m, 2_1_5, m 40 
Octagonal 8/m, 2/m, 2/m 32 8,2,2 m,m, 2i8, m,m 64 
Antiprism based on regular pentagont 5, 2, m 10 5, 2 
Regular icosahedron or regular dodecahedron 5, 3, 2/m 120 5, 3, 2 (5, 3, 2/m)±m 240 

PSG + 

h i4 
h 212 
h (2, 2, 2)®in 
h 2±4, 2, 2 
h 26,2,2 
h 2±6, 2, 2 
h (4, 3, 2)®i4 

24,3,2 

2_1_3,2 

2_1_5,2 
218, 2, 2 

(5, 3, 2)®i4 

* The molecule of allene (1, 2-propadiene) CsH4 (Fig. 22). The four hydrogen atoms are the vertices of a tetrahedron inscribed on a right prism based 
on a square; the three atoms of carbon are located at the axis of the prism. 

t For instance the molecule of 'staggered ferrocene' Fe(CsHs)2 (Fig. 23). The atoms of carbon are the vertices of two regular pentagons situated in two 
parallel planes symmetrical about the atom Fe. A rotation through angle 27r/5 transforms one pentagon onto the other one. 

orthogonal to the space IF " - ~  (see, for instance, Fig. 
9). In the same way the hyperpyramid generalizes the 
pyramid oflE 3. It is generated by a line passing through 
a point (or vertex) S and a polytope of IF "-~, called 
the basis. If the orthogonal projection of the vertex 
falls on the barycentre of the basis, the hyperpyramid 
is called a right hyperpyramid (see, for instance, Fig. 
12). 

Let us consider a crystal cell of E "-~ and its PSG 
Go of order q. Thanks to the formula of § II we can 
state the following properties. (i) The PSG of the 
right hyperpyramid of IF" built on this cell is of order 
q and has the same symbol as Go; it is a polar PSG 
(Weigel & Veysseyre, 1982; Weigel et al., 1987). 
(ii) The PSG of the right hyperlfrism of ~n built on 
this cell is of order 2q. 

Two examples illustrate these results. The first con- 
cerns the square: in IF 2 the order of the PSG, 4mm, 
of the square is 8; in ~3 the order of the PSG, 4mm, 
of the right pyramid built on a square, is 8 (molecule 
BrFs) and the order of the PSG, 4/m 2/m 2/m, of 
the right prism built on a square is 16 (holohedry of 

I • 

11 i / 

_ _ 

Fig. 22. Molecule  o f  allene (1, 2-propadiene) .  

the tetragonal system); in [E 4 the order of the PSG, 4, 
m, m, of the right hyperpyramid built on the right 
pyramid based on a square is 8. 

The second example concerns the regular pen- 
tagon: in IF 2 the order of the PSG of the regular 
pentagon is 10; in II :3 the order of the PSG of the right 
prism based on a regular pentagon (called pen- 
tagonal) is 20; and in II :4 the order of the PSG of the 
right hyperpyramid based on pentagonal is 20 and 
that of the PSG of the right hyperprism based on 
pentagonal is 40. 

In Table 5 we have listed right hyperprisms and 
hyperpyramids based on solids of E 3, their PSGs and 
possibly PSG+s. In the second part of the table we 
give examples of non-crystallographic point sym- 
metry groups of right hyperpyramids and hyper- 
prisms. 

.H ,"H 

I 

I " H  

FI ~F¢ . H  
" \  [ / "  

,/ I 
H" ~ H 

\ .  

Fig. 23. Molecule o f  'staggered ferrocene ' .  
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Concluding remarks 

All the results obtained for the regular simplexes of 
[E 4 c a n  be generalized to the space of higher 
dimensions both from the geometrical point of view 
and also in the framework of the WPV notation. 

In ~:3 the regular tetrahedron has four faces which 
are equilateral triangles, in ~4 the regular pentatope 
is bounded by five regular tetrahedra, in IF 5 the regular 
hexatope is bounded by six regular pentatopes. More 
generally, the regular simplex of IF n will be bounded 
by (n + 1) regular simplexes of IF n-l. 

The Hermann-Mauguin  notation of the PSG of the 
regular tetrahedron is 7~3 m, the notation for the equi- 
lateral triangle in ~:2 being 3m. In the same way the 
WPV symbol of the PSG of the regular pentatope is 
55 (~,,3, m) and that for the PSG of the regular 
hexatope will be 66 [55 (~,, 3, m)], where 66 is the 
notation of a cyclic group containing PSOs 61y 65 zt m u .  

The order of the PSG of the regular tetrahedron in 
II :3 is 24, i.e. the product of 4 (order of the PSG 4) 
and 6 (order of the PSG 3m). The order of the PSG 
of the regular pentatope in E5 is 120, i.e. the product 
of 5 (order of the PSG 55) and 24 (order of the PSG 
4, 3, m). The order of the PSG of the regular hexatope 
in IF 6 is 720, i.e. the product of 6 (order of the PSG 
66) and 120. The generalization is obvious. 

In § III we explained how we can inscribe a regular 
simplex in a particular rhombotope (cos a = - 1 / n )  
in the spaces II :2, [E 3 and [E 4. The same construction is 
possible in IE". Let ( X l , . . . ,  x,)  be a lattice basis such 
that 

IIx, ll=llxjll and c o s ( x , , x j ) = - l / n  V ( i , j )  i ~ j .  

The 2 ~ vertices of the rhombotope cell are So 
(origin) and AI, A 2 , . . . .  This rhombotope P,, con- 
tains 2n hypervolumes or rhombotopes Pn-i belong- 
ing to subspaces of dimension (n - 1), n rhombotopes 
have a vertex in So and n others have no vertex in So.  

The regular simplex has the following vertices: the 
centres of the n rhombotopes P~-I which do not have 
a vertex in So and the point So.  

A second regular simplex, symmetrical with the 
previous one about the centre 1"2 of the cell, can also 
be inscribed in the rhombotope. 

From the 2 ( n + l )  vertices of these two regular 
simplexes, we can define a convex polytope inscribed 
in P,. The order of its PSG is 2(n + 1)! 

For example, in IF 5, we obtain the bi centrosym- 
metrical hexatope or isometric dodecatope. The order 
of its PSG is 1440; it is the holohedry of the crystal 
family XXXII (Plesken, 1981). 

We can also compare the properties of some crystal 
of families of [E 3, IF 4 and Es. In IF 3 the convex polytope 
built on the 2 × 4 vertices of the regular tetrahedra is 
the cube [ 2 ( n + 1 ) = 2  n only if n = 3 ] .  But in spaces 
of higher dimensions the particular rhombotope, 
cos a = - l / n  (or the two regular simplexes 
inscribed), and the hypercube are the holohedries of 
two different crystal families: 

in [E 4 families XXII and XXIII 
in IF 5 families XXXII and XXXI. 

Besides, two different systems belong to the family 
XXIII,  in [E 4 (Veysseyre et aL, 1984): 

hypercubic system number 32 
hypercubic Z-centred system number 33. 
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